4,Pattern Recognition Application using Bayesian Inference

 from sklearn.datasets import load_digits

from sklearn.model_selection import train_test_split

from sklearn.naive_bayes import GaussianNB

from sklearn.metrics import accuracy_score


# Step 1: Load dataset (handwritten digits 0-9)

digits = load_digits()

X, y = digits.data, digits.target


# Step 2: Split into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)


# Step 3: Apply Naive Bayes (Bayesian Inference)

model = GaussianNB()

model.fit(X_train, y_train)


# Step 4: Make predictions

y_pred = model.predict(X_test)


# Step 5: Measure accuracy

accuracy = accuracy_score(y_test, y_pred)

print(f"Accuracy: {accuracy:.2f}")


Comments