3,Bayesian Inference in Gene Expression Analysis

 import numpy as np

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.naive_bayes import GaussianNB

from sklearn.metrics import classification_report, accuracy_score

from sklearn.datasets import load_breast_cancer  # As example gene expression-like dataset


# Load example dataset

data = load_breast_cancer()

X = data.data  # Gene expression features (e.g., gene1, gene2, ...)

y = data.target  # Labels (e.g., cancer: 1, normal: 0)


# Train/test split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)


# Gaussian Naive Bayes

model = GaussianNB()

model.fit(X_train, y_train)


# Predictions

y_pred = model.predict(X_test)


# Evaluation

print("Accuracy:", accuracy_score(y_test, y_pred))

print("Report:\n", classification_report(y_test, y_pred))


Comments