1,Solving Regression & Classification using Decision Trees

 from sklearn.tree import DecisionTreeClassifier

from sklearn.datasets import load_iris

from sklearn.tree import DecisionTreeRegressor

from sklearn.datasets import make_regression

from sklearn.model_selection import train_test_split


# Load data

X, y = load_iris(return_X_y=True)


# Split data

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)


# Train model

clf = DecisionTreeClassifier()

clf.fit(X_train, y_train)


# Predict and print accuracy

accuracy = clf.score(X_test, y_test)

print("Classification Accuracy:", accuracy)



# Create data

X, y = make_regression(n_samples=100, n_features=1, noise=5)


# Split data

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)


# Train model

reg = DecisionTreeRegressor()

reg.fit(X_train, y_train)


# Predict and print score

score = reg.score(X_test, y_test)

print("Regression R^2 Score:", score)


Comments